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In the first part of thus paper it is shown that a large class of weak Chebyshes
subspaces of Cla.b| can be considered as a class of generalized spline funciions.
This gencralizes a result of Bartelt (J. Approx. Theory 14 (1975) 30-37). In the
sccond part [ -uniqueness for a large subclass of generalized spline functions s
proved. In particular. results of Galkin (Math. Notes 15 (1974} 3-8), Strauss
("Numerische Methoden der Approximationtheorie.” Band 2. 1973). and Carroll
Braess (/. Approx. Theory 12 (1974). 362-364) who have shown £, uniqueness for
subspaces of polynomial spline functions and certain continuously composed
Chebyshev subspaces are obtained in this way.

0. INTRODUCTION

Let G denote an i dimensional subspace of Cla. b|. the Banach space ol
continuous real-valued functions on the compact interval |a.b| with the
uniform norm. Then G is said to be a Chebysher subspace (weak Chebysher
subspace) if each nonzero function in G has not more than n- | zcros
(changes of sign) on |a,b|. We denote the class of all weak Chebyshev
subspaces of Cla. b] of dimension # by W, .

The prototype of weak Chebyshev subspaces arce the subspaces of
polynomial spline functions with fixed knots (cf. |6.7]). In the first part of
this paper we present a partial converse to this result referring to a paper of
Bartelt |[1]. We prove in Theorem 3.1 that under some additional
assumptions on a weak Chebyshev subspace G there exists a minimal set of
knots ¢ = X, < X, < - < X < x, = b such that every g in G has either at
most 1, I ozeros on |y, . x|, where u; —dim G =dim Gy
vanishes 1dentically there. Hence it turns out that G, is a Chebyshey
subspace of C|y; ,.x,| which implies that  can be considered as
generalized  spline  subspace of Cla. h|. We obtain in this way  «
generalization of the statement of Theorem 2 in |1}, Furthcrmore. applying
the statement of Theorem 4 in [ 1] we can casily show {Theorem 3.3) that the
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converse to Theorem 3.1 is also true. Hence we have obtained a charac-
terization of those elements of W, which can be decomposed by finitely
many knots into Chebyshev subspaces.

In order to prove Theorem 3.1 we need some properties of weak
Chebyshev subspaces of Cla, b|. At first we show in Theorem 1.4 that for
every subinterval |c,d| of |a.b| the subspace G=G ey 18 a weak
Chebyshev subspace of C|c., d|. Moreover we examine those subspaces in W,
the elements of which do not vanish on any subinterval of |a, b|. Suppose
these spaces have Chebysher rank (C-rank) less than or equal to A
(k < n —1). This means that the dimension of the set of best approximations
of fis not greater than k for each f'in C|a. b]. We show in Theorem 2.5 that
C-rank < n — 2 implies the Chebyshev property and have therefore obtained
a new characterization of Chebyshev subspaces.

In addition to the uniform norm let us consider the L -norm on |a.b}. In
the second part of this paper we study the question of whether uniqueness of
best L, -approximation holds for those elements of MW, which satisfy the
assumptions of Theorem 3.1. It is well known that if G is a Chebyshev
subspace. then every function f in Cla.b| has a unique best L -
approximation from G (see Rice [8.p. 109|). But contrary to best L -
approximation. where the Chebyshev property is both sufficient and
necessary for uniqueness of best L ,-approximations. there are non-
Chebyshev subspaces which also guarantee uniqueness of best L
approximations of / for every /'in Cla. b|. Recently. Galkin |4 and Strauss
[14] have established that this phenomenon is even given for subspaces of
polynomial spline functions. i.e.. for every fin C|a. b| there exists a unique
syin S, .. where S, , denotes the subspace of polvnomial spline functions of
degree m with & fixed knots. such that

N /
|1/ = s, (x) dx < |

s s

(x) - s(x) dx foreverysin S, ,.

It is easily verified that §,, , satisfies the assumptions of Theorem 3.1.
Taking this fact into consideration we define a large subclass V', of certain
weak Chebyshev subspaces for which the assumptions of Theorem 3.1 are
valid. We show (Theorems 4.2 and 4.4) that every G in V, guarantees
uniqueness of best L -approximations of f from G for every fin Cla.b|. V',
seems to us to be the most important subclass of W, because every spline
subspace §,, , and certain continuously composed Chebyshev subspaces are
contained in 7. Hence there follow from our statement the results of Galkin
[4] and Strauss |14] for §,, and of Carroll and Braess [2] for certain
continuously composed Chebyshev subspaces. To prove Theorem 4.4 we
essentially use a condition established by DeVore and Strauss |13] ensuring
uniqueness of best L -approximations. This condition is not necessary for
uniqueness as we show by two examples.
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Furthermore, we present an example where best L -approximation of
continuous functions, by elements of W, not in ¥, . is not unique in general.
This 1s even true for weak Chebyshev subspaces which can be decomposed
by knots into Chebyshev subspaces according to Theorem 3.1. For
generalized spline subspaces, therefore. uniqueness does not hold in general.

Finally we define a subclass ¥, of W, the elements of which do not satisfy
the assumptions of Theorem 3.1. However, using the same kind of arguments
as in the proof of Theorem 4.4 it is easily verified that also every G in V,,
guarantees uniqueness of best L ,-approximations.

I. RESTRICTED WEAK CHEBYSHEV SUBSPACES
We distinguish the following zeros of a function /' in Cla. b|:

DEFINITION 1.1. A zero x,€ (a.b) of f is said to be a zero with a
change of sign if in each neighborhood of x, there exist two points x, <
x, < x, such that f(x,) - f(x,) < 0. An isolated zero x, € (a. b) of fis said to
be a double zero if f does not change sign at x,. Two zeros x,. x, of f are
said to be separated if there is an x,. x, < x, < x,.such that f{x,) # 0. Let
Z(f)={x€ |a,b}: f(x) =0} and let | Z( /) be the number of zeros of / on
la, bl

We first prove that each subspace G of G obtained by restricting G to a
subinterval |c.d| of |a,b| is weak Chebyshev provided that G is weak
Chebyshev. To do that we need the following characterization of Jones and
Karlovitz |6]:

LEMMA 1.2, Let G be an n-dimensional subspace of Cla.b|. Then the
Jfollowing conditions are equivalent:

(iy GeWw,.
(il) Given a=x,<x, <---<x, ,<x,=b. there exists a g€ .
g # 0. such that

(=17 ' g(x)=0. X; o <X <y, =l

(i) If g+ grwee g, s a basis of G. then a <1, <1, < -~ <, < b ax
§, <8, < e S, < b imply

det | g,(¢;) - det [ g(s;)| > 0.

Applying this lemma and the definition of weak Chebyshev subspaces. it
1s easy to show
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LemMa 1.3. Let G be an n-dimensional subspace of Cla,b|. Then the
Sfollowing conditions hold:

(1) If GE W, then there exists a g € G with exactly n — | changes of
sign on (a, b).

(i) If G& W, then there exists a g € G with at least n changes of
sign on (a. b).

We are now in a position to state our first result.

THEOREM 1.4. Let GE W,. If a < ¢ < d <b. then the space G =G el
is a weak Chebyshev subspace of C|c.d| with dimension less than or equal
to n.

Proof. Let m be the dimension of G. We only examine the case when
m < n. Suppose first that @ = ¢ < d < b. We show that G is weak Chebyshev.
Since m < n, there exists a basis {g,.g.... g,} of G such that G =
spani{h,.... h, |, where h;= g;|,, . i=l...mand g;=0on |a.d]. i=m +

Let G, ,=1{g€G:g=0 on la,d|l. Then G,,=span{g, . .. &}
Assume now that G is not weak Chebyshev. This implies that there exists a
function ¢ € span{ g,..... &, with at least m changes of sign on (a, d). By
Lemma 1.3 there exists a function g € G, with at least n —m — 1 changes of
sign on (d.b). Since g€ G,,, it follows that g=0 on [a.d|. Then, for
sufficiently small k > 0, either the function g + k¢ or the function g — kg has
at least m changes of sign on (a.d). n — m — | changes of sign on (d. b) and
a further one on a neighborhood of d. Hence we have found a function in G
having at least n changes of sign. But this contradicts the hypothesis of G to
be a weak Chebyshev subspace of Cla, b|. _

Assume now that a <c <d < b and_let G=G| fa.q) With dim G == r. Then
it follows from the first case that G is a weak Chebyshev subspace of
Cla.d|. Therefore replacing the subspace G by the subspace G we can
conclude as in the first case and get the desired statement.

2. WeAK CHEBYSHEV SUBSPACES AND CHEBYSHEV RANK

In this section we are interested in those subspaces G for which the set of
best L -approximations of / from G has dimension less than or equal to &
(k <n—1) for every f in Cla, b]. This property has been investigated by
Rubinstein 9] and Zuhovickii |16] in subspaces of C(Q), where () is a
compact Hausdorff space.

DerINITION 2.1. Let O be a compact Hausdorff space and let G be a
subspace of C(Q) with the uniform norm. G is said to be of Chebyshev rank
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(C-rank) less than or equal to &, if, for each /" &€ C(Q). the sct of best approx
imations P.(f) of /from G is at most a A-dimensional polyhedron. G is said
to be of C-rank k. if G is of C-rank < & but not of C-rank <. & -~ 1.

Rubinstein has obtained the following characterization of subspaces of
C-rank < k.

THeorREM 2.2, Let G be an n-dimensional subspace of C{Q). For each
S € CQ) P.SY is at most a k-dimensional polvhedron [f and only if cvery
k + 1 linearly independent functions g,..... g, ., ¢ G have at most n k|
common zeros on Q.

We are particularly interested in subspaces ¢ of Crank <o » [ [t
follows directly from Theorem 2.2 that: & has Crank < » | if and only +f
for any x € Q there exists a g € G with g(x) =0,

Considering this property we call a point x € Q nonvanishing with respect
to G if there is a g € G with g(x) # 0. In the following ~with respect to G~
will be omitted.

Consequently ¢ has Cerank << 1 4 and only i ecach v Q s
nonvanishing. Equivalently. G has C rank n if and only if there exists an
T€ @ with g(x) =0 for every g € G.

Using the statement of Theorem 2.2 and our above conclusions we are
able to determine the C-rank of certain subspaces of Cla. b|.

ExampLE 1. Let G be an n-dimensional subspace of Cla.b]| and let G
contain a positive function. Then G has C-rank < n — 1.

ExampLe ii. Let ¢ <x, <x, < -+ < x, <0 be any partition ol |a.b|.
Then by S, , =span{i.x...x” (x —x)7 .. (x-x)" we denote the
subspace of polynomial spline functions of degree m with & fixed knots x, .
Xy X, Obviously. dim S, , =m+k+ 1. Using the statement of
Theorem 2.2 it is easily verified that S, has C-rank k.

m.h

We are now interested in those G € W, which have. for some & 2= 0.
C-rank < k. Furthermore, suppose that & does not contain any function
vanishing identically on subintervals of |a. b]. We can then show that these
subspaces are even Chebyshey provided that A< #n - 2. To prove this

statement we need some properties on weak Chebyshev subspaces of Cla. b

Lemma 2.3 (Stockenberg [13]). Let G& W, . Then the jollowing
conditions hold:
(1) If there is a g€ G with n separated. nonvanishing zeros x, <
Xy < e <X, then g(x) =0 for all x with x < x| and x > x,.

(ii) No g € G has more than n separated. nonvanishing zeros.
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LEMMA 2.4 (Sommer and Strauss [I1], Stockenberg |12]). Let GE W .
Then there exists an (n — )-dimensional weak Chebysher subspace of G.

We are now in a position to state our main theorem of this section.

THEOREM 2.5. Let GE€ W, and let G have C-rank <n- 2. I/ no
nonzero g € G vanishes identically on a nondegenerate subinterval of |a. b|.
then G is a Chebyshev subspace.

Proof. Since G has C-rank <n -2, it follows from our above
considerations that each x € |a, b| is nonvanishing. Let g be any function in
G with at least n zeros. Then by assumption on G all zeros of g are
separated. because otherwise g would vanish identically on some subinterval
of |a.b|. Now applying Lemma 2.3 we can conclude that g has precisely
zeros x, < --- < x, and g(x)=0 for all x with x < x, and x > x,. Then our
assumption on G implies that x, = @ and x,, = b. Thus 've have shown that G
is a Chebyshev subspace on |a.b) and also on (a, b|. i.e.. each g € G has a1
most n — | zeros on these intervals.

Suppose now that G is not Chebyshev on |a, b|. Then arguing as above
we obtain a function g€ G such that g has precisely n zeros ¢ =ux, <
X, < .- <x,=b. where at x,...x, | there are changes of sign of g By
Lemma 2.4. there is a basis {g,. & .. &, ! of G such that g,. g,..... g
span an (/ + l)-dimensional weak Chebyshev subspace of G. i=0....n — 1.
Without loss of generality let g, have exactly 7 changes of sign on (a. b), i =
0....n - 1. We distinguish two cases.

Case 1 (n even, say, n=2p). Then for sufficiently small ¢ > 0. the
functions g — cg,,. A =0..., p— |, have n zeros on |a.b|. Now arguing as
above we can conclude that g,.(a)= g,,(b)=0. k=0.... p— 1. Similarly,
for sufficiently small ¢ > 0, the functions g,, + cg., ,- A= 1l.... p— I. have
at least 2k changes of sign on (a.b) and. in case g, ,(a)#0 or
gy 1(b) # 0, at least one further change of sign at a neighborhood of a or 5.
respectively. However, these functions belong to the weak Chebyshev

subspaces span{ g,, g;..... &,,} and, therefore, each such function can have at
most 2k changes of sign. This implies that g,, ,(a)= g5, (b)=0, k= 1.....
p — 1. Thus there exist n — | linearly independent functions g,..... g, .in G

vanishing at @ and b. But this contradicts the hypothesis that G has
C-rank < n — 2.

Case 1l (nodd). We proceed analogously.
This completes the proof of Theorem 2.5.

Remark 1. It follows immediately from the first part of the proof of
Theorem 2.5 that C-rank n — 1 already implies that G is a Chebyshev
subspace on |a, b) and also on (a, b|.
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Remark ii. The statement of Theorem 2.5 corrects the statement of
Theorem 2 of Bartelt |1]. His theorem was stated for subspaces containing
the constants (recall that such subspaces have C-rank < n — 1), however. in
[11] a counterexample has been presented.

3. GENERALIZED SPLINE SUBSPACES

Now we are able to prove that weak Chebyshev subspaces. under
appropriate hypotheses, can be considered as generalized spline subspaces.

THEOREM 3.1. Let GE W, and let each x € |a,b| be nonvanishing.
Assume also that there exists a > 0, such that, if g€ G and g=0 on
le.d]| < [a,b|, then d—c> 0. Then there exist knots a=x,<x, <<
x = b such that the subspaces G; =G|, |, are Chebyshev subspaces of
Clx;_,»x;| with dimension n;, i =1,....s.

Proof. First we follow the lines of Bartelt |1, Theorem 3|: There exist
points a = v, < ¥, < --- < ¥, = b such that no nonzero g € G, vanishes iden-
tically on a subinterval of |y, ,.v]. where G,=G v, .y Using
Theorem 1.4 we have that every G, is a weak Chebyshev subspace with
dimension m,. We also show that G, has C-rank < m, — 1. Suppose that, for
some [ € {l...,r{. this property is not given. Then there exists an <€
| v._,. ¥;| such that g(X) =0 for every g € G,. This implies that g(¥) =0 for
every g € (. a contradiction.

Thus we have shown that, for i=1...r. G, is an m dimensional weak

Chebyshev subspace of C|y, ;. ;| with C-rank < m; — | and no nonzero
g € G, vanishes identically on a subinterval of |y, ,.;]. Therefore it
follows from the remark following the proof of Theorem 2.5, for i = L.... s,
G, is a Chebyshev subspace on (y, ,.¥;] and also on |y, ,.v,). If G, is
even Chebyshev on |y, . »;|. then we are done. But if., for some i € {1..... r}.
G, is not Chebyshev there, then we divide |y, ,. ;| and choose a further
knot ;= (»; , + »,)/2. This implies that both G|, | ; and G| ,, are

Chebyshev subspaces with dimension m;. This we may do for all intervals
| v, 1. ¥). i= l..,r on which G, is not Chebyshev. We end up with a set of
knots @ =x, <x, <--- <x =b such that. for i=1l...s. G;=G|, 18
Chebyshev with dimension »,. This completes the proof of Theorem 3.1.

Remark i. Following the lines of Theorem 3 in |1} it is easily verified
that the set of knots constructed in the proof of Theorem 3.1 is a minimal
set.

Remark ii. If we assume that G has C-rank < n — 2, then the intervals
| v;_,, v;| must not be divided. Instead we apply Theorem 2.5. To do this we
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show that all subspaces G, have C-rank < m; — 2, i = l.....r. For a fixed i let
m i 1> ms2e &y De linearly independent functions in G such that g;=0 on
|1l, . _v,-]l, j=m,; + l...n. Now suppose that G, fails to have C-rank
m; — 2. This implies that there exist m; — 1 functions g,. g;,... &, 1 € G

which are linearly independent on [y, |, »;| and have two common zeros
there. Therefore the functions g;,..., &, 15 &m, s 1 & have at least two
common zeros on | y;_,, v;]. However, this contradicts the hypothesis that G

has C-rank < n — 2. Thus we have shown that G, has C-rank <m, — 2, i =
l....., 7. Now using Theorem 2.5 we conclude that G, is a Chebyshev subspace
of C|y;_,.»;} with dimension m,, i = l...r.

Remark iii. The essential difference between Theorem 3 in |1] and
Theorem 3.1 is as follows: In Theorem 3 in [1} it is assumed that the
constants belong to G. In Theorem 3.1 we only need that each x € |a, b| be
nonvanishing. This is really a weaker assumption as the following example
shows: Let G =span{g,, g,} < C|0.3]. where the functions g,. g, are
defined by g,(x) = x* — 3x and

gi(x)=x—1. if x€]0.1].
=0, it ve[1.2].
=x—2, if xe(2.3]

Then it is easily verified that G is weak Chebyshev and satisfies the
assumptions of Theorem 3.1. But G does not contain any positive function.

Remark iv. The condition on the length of the zero intervals in
Theorem 3.1 cannot be omitted as has been shown in [1].

We now present an example showing that because of the choice of the
knots y,. ¥,...., ¥,_, it is generally necessary to divide some intervals and to
add further knots. Let G = span] g,, g,. g, © C|—1, 3]. where the functions
g, & g are defined by g,(x) =1,

g2,(x) = x(1 — x7). if xe|-1,1],
0, it xe |3,
and
g:(x)=x", if xe|-1.1]
—1, it xe (1.3,

Then it is easily shown that G is weak Chebyshev and has C-rank 2. Now
following the lines of the proof of Theorem 3 in |1] we get y, = 1 as the only
knot. However, G, =G|, |, is not Chebyshev on |—1.1|. Therefore we
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have to divide the interval |- I. 1] a further time and obtain, finally, the
knots x, =0 and x, = I.

It turns out that a similar result as in Theorem 3.1 can be obtained for a
certain subclass of those elements of W, which have C-rank ».

THEOREM 3.2, Let GE& W, Let X €& |a.b| and let g(x)=0 for cvery
¢ € G. Assume also that there exists a o > 0 such that. il ¢ € G and g =0 on
le.d] < la.bl. then d—c > 0. Then there exist knots a = x, < x, < - <
x =b such that the subspaces G, =G are weak Chebysher with
dimension n (n, 2 0). i = L...s. Furthermore. no nonzero ¢ < G, ianishes
identically on a nondegenerate subinterval of 1x, . x, L

Arguing as in the proof of Theorem 3.1 we can casily verify the above
statements. Weak Chebyshev subspaces of the same type as those in
Theorem 3.2 have been investigated by Sommer and Strauss |11] and
Stockenberg |13].

Now we show that the converse of Theorem 3.1 is also true.

THEOREM 3.3, Let a=x,< x, < -« x_=h be knots on |a. b|. For i -
lows. let G, be a Chebysher subspace of Clx, ,.x;| with dimension n,
(yz 1) Let G={g€Cla.bl: gl €G.i=1l.si ThenGisaweak
Chebysher subspace of Cla.b| with dimension n=1>7  n,-—(s-—1)
Furthermore. each x € |a, b| is nonvanishing.

Proof. Bartelt |1. Theorem 4] has proved that G is weak Chebyshev
under the additional assumption that the constants are contained in every G,
Since each Chebyshev subspace contains a positive function (see Karlin and
Studden |7.p.28|). the first sentence of the conctusion of Theorem 3.3
follows directly from Theorem 4 in | | ]. Because of the existence of a positive
function in G. the second sentence follows immediately. too.

We call weak Chebyshev subspaces such as the one constructed in
Theorem 3.3 “continuously  composed  Chebyshev  subspaces™ (CC
subspaces). In particular, if 7, =m. i = l....s. then ¢ is a subspace of splinc
functions with s 1 fixed knots of multiplicity m — 1.

4. BEST L -APPROXIMATION

In addition to the uniform norm tet the L -norm be endowed on Cla. b|.
For every subspace G of Cla. b| consider the set of best 1. approximations
of a function f' from G

Py =g, EGlS - gyl =il f - gl g€ Gl
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We need the following condition established by DeVore for one-sided L -
approximation and by Strauss |15] for L -approximation.

DerINITION 4.1. Let G be a subspace of Cla. b|. Let each g € G have
only finitely many separated zeros. We say that G satisfies condition A if.
for every nonzero function g, € G and every finite subset Z = {z,}/ | of

i

Z(gy) M (a, b) (r € N), there exists a nonzero function g, € G satisfving:

(i) (—=D'g(x)20.xelz, ,.z;loi=lowr+1l.z,=a z, = b. and

(i) if g, =0 on an open subset M of |a. b]. then g, = 0 on M. (Recall
that Z(g,) is the set of zeros of g, on |a. b].)

If r =1, then Z = @. Therefore. the existence of a nonnegative function in
G is required.
Strauss |15] has proved the following result:

THEOREM 4.2. Let G be an n-dimensional subspace of Cla. b] satisfving
condition A. Then P(f) is a singleton for every f € Cla.b|.

Now we show that for a large class of weak Chebyshev subspaces condition
A is satisfied. By Theorem 4.2, therefore. uniqueness of best L -
approximations follows. We also show that, in particular. the subspaces of
polynomial spline functions and the CC subspaces belong to that class. We
define

V,=1G &€ W, G fulfills the hypotheses of Theorem 3.1}

Recall that, by Theorem 3.1, V', contains cxactly those elements G € W,
which can be decomposed by finitely many knots into Chebyshev subspaces.
Now let GEV, and let a=x,<x, <--- <x =bh be knots of G as in
Theorem 3.1. We define for any /. j € 10, l..sl i< j

G;=1g€ G g=0on |x;, x]h dim G, =m;,,.

In general. the subspace G; is not weak Chebyshev. However. we are able
to define a subclass of V, for which every G, has this property.

V,=1GEV,: |bd Z(g) <m,, for every g€ G, i jE {0uusi. [ < ji.

Here bd Z( g) denotes the set of all boundary points of Z(g) and [bd Z( g)|
denotes the number of all boundary points of Z(g).

We are now in position to present some important examples of elements
of V.

ExampPLE i. Let m. k€ with m+k+1=mn Let a=ux,<x, <+ -+ <
X,,, = b be a partition of |a.b|. Consider the subspace S, , of polynomial
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spline functions of degree m with k fixed simple knots x,..... x, as defined in
Section 2. It is well known (cf., e.g., Karlin and Studden |7.p. 18]) that G =
S, EW,. Now it is easily verified that for any @, j€ {0.... &k + 1}, i < /.
G, = span{(rl —x) (= x)" . (\ )T o= ) (o xg )T
{(x —x,)7}. This implies that dlm G, m” =k+1i—j+4 1. By counting
zeros of splines as in Schumaker |10, p 288-289|. it immediately follows
that |bd Z(g)| <k +i—j+ 1=m,. for every g€ G,;. Hence §
This result is also true for knots with multiplicity less than m + 1.

m .k

ExampiLE ii.  Let G be constructed as in Theorem 3.3. Then it is easy to
show that, for any 7, j € {O.....s|. { < j. G; has a basis consisting of> For p =
J+ le..s. n,— 1 functions vanishing identically on [a.x, || and linearly
independent on |x, ,.x,| and. for p=1...i n, - | functions vanishing
identical]y on |x,.b] and linearly independent on |x, ,.x,|. Hence
dim G, ;”,n+_l,,n S (s A ) =my.

LethG Then [bd Z(g)l<n,— 1 on |x, ;,x, | p—l.. i j+ las.
This implies that Ibd Z( g) < m;; which shows that G belongs to V

L -Uniqueness for subspaces of polynomial spline functions has been
recently shown by Galkin [4| and Strauss | 14| and for some special CC
subspaces by Carroll and Braess |2|. We are now able to establish L -
uniqueness for each subspace G in ¥,. Then, in particular., from our theorem
there follow all of these results.

We need the following fundamental lemma:

LEMMA 4.3. Let G €& I7,,. Then, for any i, j € {0....s|. i< J:

(i) G, is weak Chebyshev with dimension m,;:
(il  For every function g, € G; there is a function g € G such that
gi=g onl|x;. bland § =0 on la. x|
(i) For every function g, € G there is a function g, € G such that
§y= g, on |a.x;| and §,=0 on |x,.b).

Proof. (1) Suppose that G, is not weak Chebyshev for some (i. j). Then
there exists a g, € G,; with at [east m;; changes of sign on (a. 6). Since g, =0
on |x;, x|, |bd Z( go)\ 2m;+ 1, in contradlctlon to the hypothesis G € V,,.
We prove now (ii): (i) fo ]ows analogously. Let R;=1g|, »:¢€ G,,,
dim R; .. Obviously, r;; < m,;. The statement w111 be proved if we can
show that m“,v i where my, 7d1m Gy;. Using Theorem 1.4 we conclude
that R;; is weak Chebyshev Therefore by Lemma 1.3 there exists a function
g€ GU with r;;— 1 changes of sign on (x;.5). This implies that
|bd Z(g,) > Qn |x;.b]. If r;;=m,;. then it follows from the hypothesis on
G, that |bd Z(g,)} < my; =r, and. therefore. g, =0 on [a. x,|. This implies
that g, € G,;. Then it follows from the hypothesis on G; that {bd Z(g,) <
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m,;. Thus we have shown that m,, = r;; = |bd Z(g,)| < m,,;. Hence observing
that m,; < m;; we get the desired equality m,,=r,;.

Now assume that r; <m,. Then there exist exactly m,—r; linearly
independent functions in G,; vanishing identicaily on [x;.4|. This implies
that dim G, =m;, =m; —r,. Let G, be spanned by the functions #,.
Ay by, . If there exists a § € G, such that §= g, on |a, x,|, then § — g, is
an element of G,, satisfying |bd Z(g — g,)| > r;. Since G,; < G,,. it follows
that m,; < r;. Hence the preceding arguments show that m,, = r. If there
does not exist any ¢ € G, such that §= g, on |a. x;]. then the space

G =spanih,. hy....h, . g}

llu wxyl

has dimension m,, + 1. By Lemma 1.3 there exists a g, € G,; with at least m,,
changes of sign on (a, x;). This implies that |bd Z(g,)l > m, + 1 on |a.x;|.
As g, =37 ah +bg,. |bdZ(g) =1bdZ(g) >r; on |x.b] and
therefore, |bd Z(g )| =>m + 1+ ry=m;—r;+ 1 +r;=m;+ 1. But this
contradicts the hypothesis that |bd Z( g)| < m,; for every g € G,;. (Recall that
hy...h, span an m;-dimensional weak Chebyshev subspace and, therefore.
the coefficient b in the representation of g, must be nonzero.) This completes
the proof of Lemma 4.3.

We are now in position to state the main result of this section.

THEOREM 4.4, Let GE V. Then G satisfies condition A.

Proof. let g, &€ G and let Z<=Z(g,)N(a.b) be a finite set. We
distinguish two cases:

Case 1. Let g, not vanish identically on any nondegenerate subinterval
of |a,b|. Let Z={z,}/"\ (r€MN). Then it follows from Lemma 2.3 that
r < n. Using Lemma 2.4 we find an r-dimensional weak Chebyshev subspace
of G, and by Lemma 1.2, therefore. there is a nonzero g€ G such that
(=D g(x)20.x€ |z, .z, p=1l.rizy=a,z,=b

Case 2. Let g, vanish on a subinterval of [a.b].

We have to distinguish. once more, three cases:

Case i. Let [ =|x;, x|, a <x; <x;<bsuchthatg,=0on [/ and g, does
not vanish identically on any nondegenerate subinterval of [a.x;|. Using
Lemma 4.3 we find a g, € G, with g, = g, on |a. x,|. By hypothesis on G, .
Ibd Z(g,)| < m,, and, therefore, |bd Z(g,)|<m,,— 1 on |a,x;). Then the
assumption on g, implies that g, has at most m,, — 1 zeros on |a. x;). Let
ZN(a.x;)={z,},_) (r€MN). Then r <m,. Using Lemmas 2.4 and 1.2 we
obtain a nonzero function ¢ € G, such that

r ]

(—1)" g(x) >0, x€lz, 1.z, p=lu.r. zy=a. z,=x.

In particular, §=0 on |x,, bl
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Case ii. Let I=|x.x;|. a<x;<x;,<b such that g,=0 on / and g,
does not vanish identically on any nondegenerate subinterval of [x,. h|. Here
we can conclude as in Case ii.

Case iii. Let [, =|a,x,| and 1, = |x;. x,|. x,, < x;. such that g, =0 on
[, U1, and g, does not vanish identically on any nondegenerate subinterval
of [x,.x;]. Using Lemma 4.3 we find a g, € G,, with §, = g, on |a. x,|. This
implies that the linear subspace G = G,, N G, has dimension d > 1.

We show that G is even weak Chebyshev. Suppose that G fails to be weak
Chebyshev. Then there exists a g, € G with at least d changes of sign on
(x,..,). Since g, € G. it follows that g, = 0 on |a, x,| ' |x,. b|. This implies
that 'bd Z(g,)2d+ 2. Now using that GG, we conclude that
ibd Z(g,)| < m,,. Therefore m,, >d+ 2. Hence there exist m,, d
functions in G, linearly independent on [x,. 5] and a function g, € G, with
at least m,, —d - 1 changes of sign on (x;,b). Therefore. for sufficiently
small ¢ > 0. either the function g, + cg, or the function g, - cg, has at least
m,, —d — 1 changes of sign on (x;. b). at least ¢ changes of sign on (x,. ;)
and a further one at a neighborhood of ;. This implies that one of these
functions has at least m,, changes of sign on (x,. A). But this contradicts the
hypothesis that G,, is weak Chebyshev. Thus we have shown that G is a
weak Chebvshev subspace.

Next we show that g, has at most ¢ - 1 zeros on (x,..v,). Assume that
[Z{g, ) =don (x,.x,). Then g,(x,) = g,(x;) =0 implies that  Z(g.} =d + 2
on |x,. v, . From g,= g, on |a. x| and g, € G, it follows that | Z( g, )l < m,
on |x,.x,|. Therefore d < m, = dim G, . Now using the fact that G < G, we
find m,, — d functions in G, linearly independent on |a..x,| and a function
g€ G with at least m, - d — 1 changes of sign on (a.x,). Let m be the
number of all zeros of g, on |x,.x;] and r, the number of all common zeros
of g, and g on |x,.x,}. We classify the other m — r, zeros of g, on |x,. v,]
as follows:

Let r. be the number of all double zeros with the property that tor each of
these zeros there exists a neighborhood U such that g,(x) g{x) 2 0 for every
x e

Let r, be the number of all double zeros with the property that for cach of
these zeros there exists a neighborhood U such that g,(x) g(x) < O for every
xe .

Let r, be the number of changes of sign.

In the case when g(x,)# 0, the zero x, of g, is not considered in the above
classification. because by Definition 1.1, x, is neither a double zero nor a
zero with a change of sign of g,. Thus we have

m=vr +r,+r+tr,+ 1 it glx,) # 0.

=r oy, it gx,)=0.
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We distinguish two cases:

Case i (r, > ry or r, < ry, respectively). Without loss of generality let
ry > r,. Then for sufficiently small ¢ > O the function g, —cg has at least
m;, —d — 1 separated zeros on (a,x,) and at least r, +r, + 2r, 2> r, +r, +
ri+r,+1>m separated zeros on |x,.x;. This implies that
bd Z(ge—c@lzm+my—d-12d+2+m—d—1=m; .+ 1 on |a.x,].
As g,= g, on |a.x;}, |bdZ(g,—cg)l = m; + 1. However. the function
g, —cg is an element of G, and. therefore, we get a contradiction to the
hypothesis that |bd Z( g, — cg)| < m,,.

Case ii (ry=r,). Without loss of generality let g,2>0 on some
neighborhood of x, (otherwise we take —g). Then for sufficiently small ¢ > 0
the function g, — ¢g has at least m; —d — | separated zeros on (a, x,) and at
least

P ry 2+ L= st 1 =m, if  glx,) = 0.

Py 2 =ri 4,4 b r,=m il glx,) =0,

separated zeros on |x,.x;| (in the case when g(x,)+ O there exists at least
one zero in some neighborhood of x,). This implies that |bd Z(g, - cg) =
my~d—1l+mzem,—d—1+d+2=m; + 1. a contradiction as has
been shown in Case i.

Thus we have proved that |Z(g,)<d— | on (x,.x;). (Note that this
property holds for every function g€ G). Now 1e~t ZO (v, X)) = z,00
{r € ™). Then, as in Case 1. we get a function § € ¢ satisfying condition A.
Thus we have shown that G satisfies condition A.

In general. condition A is not necessary for uniqueness of best L,
approximations. We show this by two examples. In particular. we will see
that the weak Chebyshev property is not sufficient for L ,-uniquensss. For
this we need a characterization of L -uniqueness established by Cheney and
Wulbert [31.

THEOREM 4.5. Let G be a subspace of Cla.b|. Then the following
conditions are equivalent:
(i) For any f € Cla. b| the set P{f) is at most a singleton.
(i) If for any function f € Cla,b] with 0 € PL(f). there exists a
Sunction g € G with Z(g) > Z(f). then g = 0.

For special subspaces of Cla. b] we can present Corollary 4.6. To do this
let G be a subspace and let
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Z,= ;S: la,b] - 1 s(x) €10, —1. 1},

N
‘ glx)s{x)dx =0 for every g & G:.

“a

By a theorem of Hobby and Rice [5]. Z,, is always a nonempty set.

CoROLLARY 4.6. Let G be a subspace of Cla. b|. Let no nonzero g € G
vanish identically on a nondegenerate subinterval of |a, b|. Assume also that
the Lebesgue measure u(Z(g))=0 for every nonzero ¢ & G. Then the
Jollowing conditions are equivalent:

(i) If there are functions f € Cla.b| and g € G such that O € P}{/))
and Z(g) > Z(f). then g=0.

(1) Af there ure functions S € Cla b} and ¢g& G such that s .=
sgn e X, and Z(g) 5 Z(s). then g = 0.

Proof. let 0E P, (f) and g, EG. g, # 0. with Z(g,) »Z(f). By the
well-known characterization theorem for best L -approximation (seec Rice
[8, p. 103]). we obtain

H )

| g(x)sgnf(x)dx

s

<[ (gl ax for every g€ G.

N

Then, since u(Z(g,) =0 and Z(g,) > Z{/). this is equivalent to

spb glx) sgn f(x) dx ’ <) letx)ldx=0  forevery g€G.

ta i AT

This implies that s =sgn f€ 2, and Z(g,) > Z(s). g, 0.

Remark. 1t turns out that this characterization is also true for arbitrary
one- and two-dimensional subspaces of Cla. b|. But we do not know if it is
also valid in the higher dimensional case.

Using the above results we can prove that condition A is not necessary for
L ,-uniqueness.

ExAMPLE i. Let G =span{g,} < C|—1.1]|. where g, is defined by
golx) = —1x, if xe|-1.0].
=X if xe 0.1}

Then it is easily verified that there exists no function /€ C[—1, 1] for which
s=sgn f€ X, and Z{s) < Z(g,). Using Theorem 4.5 and Corollary 4.6 we
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can then conclude that every f&€ C|—-1.1| has a unique best L,
approximation from G. However, condition A is not satisfied.

ExaMPLE ii. Let G =spanig,, g,} < C|0,4] and let the functions g,
and g, be defined by g,(x)=1 and

gix)=x—a. if x€|0.al.
=0, if x€la.4—ul
=x—(4-—a) if x€l4-—ad|.

where 1 < a < 2. Let some /& C|0, 4] be given such that s,=sgn f€ % ,.
Then s, has at least one zero on (4 —a, 4]
However, there does not exist any nonzero g € G with zeros on |0, a) and on
(4 — a, 4]. Therefore Corollary 4.6 shows that G guarantees L ,-uniqueness.
Now setting x, =0, x, =a, x, =4 —a, x,=4 we cannot find any nonzero
g € G such that (—1)" g(x) >0, x € |x,.x;, ,|. i=0. L. 2, which implies that
condition A is not satisfied.

The next example shall illustrate that, contrary to subspaces of polynomial
spline functions, L -uniqueness does not generally hold for subspaces of
generalized splines.

lbl

ExampLE. Let G =span{g,, g,} < C|0.4]|, where g,(x)=1 and g, is
as in Example ii, with @ = 1. This shows that G € W,. Now setting x, =0,
x, =1, x,=3, x;=4 we can conclude that the subspace G, = G\l\
i=1, 2, 3, is Chebyshev. Therefore G € V,. However, G & V,.

el

since G,z:

span{g,} and |bd Z(g,)l=2. Now it is easily shown that the function s,
defined by
so(x) =1 if x€ 0. 1),
=0, if x=1,
=—1, if xe&(l,3),
=0. it x=3,
= 1. it xe(3.4].

is contained in X,. Obviously, Z(g,)>
Corollary 4.6 and Theorem 4.5
uniqueness.

Z(s,). Hence the statements of

show that G does not guarantee L,-

Considering the proofs of Lemma 4.3 and Theorem 4.4 it turns out that all
arguments occurring there can also be applied to those weak Chebyshev
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subspaces which fulfill the hypotheses of Theorem 3.2. To show this we
define the subclass ¥, of W, by

V, - 1G € W,: G fulfills the hypotheses of Theorem 3.2;.

For each g€ V. let a = x, < x, < -~ < x_= b be knots as in Theorem 3.2.
Let G; and m;; be defined as in the case when G € V. Let

V,=1G &V, |bd Z(g) < my, for every g € G i j€ (0o st i< .
and [Z{gh <~ Lon[a b)and on (a. b tor every g € ¢ which
does not vanish on a nondegenerate subintervai of ja. | .

Then Theorem 4.7 is an immediate consequence of the arguments
occurring in the proofs of Lemma 4.3 and Theorem 4.4.

THEOREM 4.7. Let G € V,. Then G satisfies condition A.

Therefore by Theorem 4.2, every G ¢ b, guarantees L, -uniquencss.
However, simple examples show that this property is not generally given if
GET,.
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