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In the fir<,t part of tIllS paper It IS sllllwn that" large class of weak Chehvshn

suhsraccs of CIa. h I can be considered as a class of generalized spline funC1Jl111s.

rhis generalizes a result of Hartelt (J, Apprux, Theur)' 14 (I '.1751. 30-37), In the
second part I.juniqucness for a large \ubclass uf generalized spline functions \<;

proved, In particular. results of Galkin (Malh, Noles 15 (19741. 3-8). Strauss
("Numerische Methoden del' Approximationtheorie:' Band 2. 1')7,' I. and Carlull
Rraess (J, Appro.':, Theur)' 12 (1974). 362-3(4) Wl10 have shuwn f" ulllqueness I'or

subspaces of polYllomial spline functions and ccrtain continuously composed
Chebvshev subspaces arc obtained in this way,

O. INTRODUCTION

Let C denote an 11 dimensional subspace of Cia. b I. the Banach space or
continuous real-valued functions on thc compact interval la. b I with th~

uniform norm. Then G is said to be a Chebl'shel' ,\uhspace (~\'eak Cheb.l's/lf.'1
subspace) if each nonLcro function in G has not more than 11 - I zcros
(changes of sign) on Ia, b I. We denotc thc class of all wcak Chebyshev
subspaces of Cia. b 1 of dimension 11 by WI!'

The prototypc of wcak Chebyshev subspaces arc the subspaces 01

polynomial spline functions with fixed knots (cf. !6.71). In the first part 111

this paper we present a partial converse to this rcsult referring to a paper of
Bartelt II I. We prove in Theorem ~.1 that undcr somc additional
assumptions on a weak Chebysh~v subspac~ G thcre exists a minimal sct of'
knots (/ '~c Xli •.Y I < < X, I \' -~ h such that every ,g in G has either cit

nlost Ili I [eros on 1'\1 J~xil" \vhcre tl,.-dim(;i=-·Jirn(J' 1_\ 1,,<,,1" or
vanishcs identically thcrc. Hence it turns out that G, ~s a Chebyshev
subspace of Cix i I' XII which implics that G can bc considered a,
generalized ,pI inc subspace of Cia. hi. Wc obtain In this \\a\
gencrali/atilln of the statement of Theorem J in II ;. Furthermore. applyint:
the statement of Theorem 4 in ! I i we ean easily show (Iheorem 3,..') that t,ill'

~ .j
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converse to Theorem 3.1 is also true. Hence we have obtained a charac
terization of those elements of W

Il
which can be decomposed by finitely

many knots into Chebyshev subspaces.
In order to prove Theorem 3.1 we need some properties of weak

Chebyshev subspaces of Cia, b I. At first we show in Theorem 1.4 that for

every subinterval !c,dl of la,bl the subspace G=GI[c.dl is a weak
Chebyshev subspace of CI c. d I. Moreover we examine those subspaces in W

II

the elements of which do not vanish on any subinterval of la, b I. Suppose
these spaces have Chebyshev rank (C-rank) less than or equal to k
(k ~ 11 1). This means that the dimension of the set of best approximations
of/is not greater than k for each/in Cla.bl. We show in Theorem 2.5 that
Crank ~ 11 - 2 implies the Chebyshev property and have therefore obtained
a new characterization of Chebyshev subspaces.

In addition to the uniform norm let us consider the LI-norm on la.bl. In
the second part of this paper we study the question of whether uniqueness of
best L I-approximation holds for those elements of IY

II
which satisfy the

assumptions of Theorem 3.1. It is well known that if G is a Chebyshev

subspace. then every function / in CI a. b I has a unique best L I
approximation from G (see Rice 18. p. 1091). But contrary to best L,
approximation. where the Chebyshev property is both sufficient and
necessary for uniqueness of best L f -approximations. there are non
Chebyshev subspaces which also guarantee uniqueness of best L I

approximations of/for every / in CI a. b I. Recently. Galkin 141 and Strauss
[141 have established that this phenomenon is even given for subspaces of
polynomial spline functions. i.e.. for every / in CI a. b I there exists a unique
Sll in Sm.k' where Sm.k denotes the subspace of polynomial spline functions of
degree m with k fixed knots. such that

,h .Il

I I/(x)-- Sil(X)! dx ~ I i/(x) s(x)! dx
'u

for every s in Sm.k'

It is easily verified that SmJ satisfies the assumptions of Theorem 3.1.
Taking this fact into consideration we define a large subclass 1/

11
of certain

weak Chebyshev subspaces for which the assumptions of Theorem 3.1 are
valid. We show (Theorems 4.2 and 4.4) that every G in ~711 guarantees

uniqueness of best L I-approximations 01'/ from G for every / in CI a. b I· en
seems to us to be the most important subclass of W

II
because every spline

subspace SmJ and certain continuously composed Chebyshev subspaces arc
contained in (7

11
, Hence there follow from our statement the results of Galkin

141 and Strauss 1141 for Sm.k and of Carroll and Braess 121 for certain
continuously composed Chebyshev subspaces. To prove Theorem 4.4 we
essentially use a condition established by DeVore and Strauss 1151 ensuring
uniqueness of best L I-approximations. This condition is not necessary for
uniqueness as we show by two examples.
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Furthermore, we present an example where best L I-approximation of
continuous functions, by elements of Wn not in Vn , is not unique in general.
This is even true for weak Chebyshev subspaces which can be decomposed
by knots into Chebyshev subspaces according to Theorem 3.1. For
generalized spline subspaces, th~efore, uniqueness does not hold in general.

Finally we define a subclass Vn of Wn the elements of which do not satisfy
the assumptions of Theorem 3.1. However, using the same kind of argumcnls
as in the proof of Theorem 4.4 it is easily verified that also every G in Vn

guarantees uniqueness of best L I-approximations.

I. RESTRICTED WEAK CHEBYSHEV SUBSPACES

We distinguish the following zeros of a function f in Cia, b I:

DEFINITION 1.1. A zero X o E (a, b) of f is said to be a zero with a
change of sign if in each neighborhood of X o there exist two points Xl <
X o < X 2 such thatf(x I)· f(x 2 ) < O. An isolated zero X o E (a, h) offis said to
be a double zero if f does not change sign at Xo' Two zeros Xl' x, of fare
said to be separated if there is an Xo' Xl < Xo < X 2' such that f(.\'o) * O. Let
Z(f) = IX E Ia, b I: f(x) = 0 f and let 1Z(f)1 be the number of zeros of fan

la, bl·
We first prove that each subspace G of G obtained by restricting G to a

subinterval Ic, d I of Ia, b I is weak Chebyshev provided that G is weak
Chebyshev. To do that we need the following characterization of Jones and
Karlovitz 161:

LEMMA 1.2. Let G be an n-dimensional suhspace of Cia. bl. Theil {hI'
following conditions are equivalent:

(i) GE Wn .

(ii) Gil'en a = X o < Xl < ... < XII 1 < X n = b. Ihere exis{s agE G.
g i= 0, such that

(-Ir 1 g(x)~O. Xi I < X < Xi' i = 1..... II.

(iii) ~j'gI' g2 .. • .. gn is a basis ofG. Ihen a (, 11 <-- t2 < ... < In ~ b. a ~
SI < S2 < ... < Sn (, b imply

det 1 gi(t;)1 . det gi(S i)1 ~ 0.

Applying this lemma and the definition of weak Chebyshev subspaces. it
is easy to show
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LEMMA 1.3. Let G be an n-dimensional subspace of Cia, b I. Then the
following conditions hold:

(i) If G E: W", then there exists agE: G with exactly n - I changes of
sign on (a, b).

(ii) If G E W", then there exists agE G with at least n changes of
sign on (a, b).

We are now in a position to state our first result.

THEOREM 1.4. Let G E: W". If a ~ c < d ~ b, then the space G= G I[e.d[
is a weak Chebyshev subspace of C[c. dl with dimension less than or equal
to n.

Proof Let m be the dimension of G. We only examine the case when
m < n. Suppose first that a = c < d < b. We show that G is weak Chebyshev.
Since m < n, there exists a basis ~ g I. g ~ ,...• g,,? of G such that G=

spanjhl .... ,h"'f, where hi = gill".dl' i= I •.... m and gi==O on [a.dl. i=m +
I ..... 11.

Let Gad=~gE:G:g==O on la,dll. Then Ga i/=span(g"'.I.·· .. g"l.
Assume now that G is not weak Chebyshev. This implies that there exists a
function g E: span j g w" g '" l with at least m changes of sign on (a, d). By
Lemma 1.3 there exists a function g E: Gad with at least n - m - I changes of
sign on (d, b). Since gE: Gad' it follows that g== 0 on [a. dr. Then, for
sufficiently small k > 0, either the function g + kg or the function g - kg has
at least m changes of sign on (a. d), n - m - I changes of sign on (d, b) and
a further one on a neighborhood of d. Hence we have found a function in G
having at least 11 changes of sign. But this contradicts the hypothesis of G to
be a weak Chebyshev subspace of Cia, b I. _ _

Assume now that a < c < d < band_let G= G :[o.dl with dim G== r. Then
it follows from the first case that G is a weak Chebyshev sUQspace of
CI a. d I. Therefore replacing the subspace G by the subspace G we can
conclude as in the first case and get the desired statement.

2. WEAK CHEBYSHEV SUBSPACES AND CHEBYSHEV RANK

In this section we are interested in those subspaces G for which 1he set of
best L.f-approximations of f from G has dimension less than or equal to k
(k ~ n - I) for every f in Cia, b I. This property has been investigated by
Rubinstein [91 and Zuhovickii [161 in subspaces of C(Q), where Q is a
compact Hausdorff space.

DEFINITION 2.1. Let Q be a compact Hausdorff space and let G be a
subspace of C(Q) with the uniform norm. G is said to be of Chebyshev rank
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(C-rank) less than or equal to k, if, for each f E: C( Q), the set of best apprux
imations p(Jf) of jfrom G is at most a kdimensional polyhedron. G is said
to be of Crank k, if G is of Crank"", k but not of Crank k I.

Rubinstein has obtained the following chmactenzation uf subspaces of
Crank"", k.

THEOREM 2.2. Lei G be ali II-dimellsional subspace 0/ C( Q). For cach
j E: C( Q), PI,(/) is al mosl a kdill1ensional polyhedroll U and olll\" ;( (,/,cn
k ' I lincarll' indepelldeill./llllclions gl ,.... g/ I G han' iii must II !,
common zeros on Q.

We are particularly interested in subspaces G of C rank /I I. It
follows directly from Theorem 2.2 that: G has Crank 11 1 if and \1I11) If
for any x E: Q there exists agE: G with g(x) .1'0 O.

Considering this property we call a point x E: Q lIonl'!lnishillg with respect
to G if there is agE: G with g(x) *' O. In the following "with respeCI to G"
will be omitted.

Consequently G has Crank"" 11 1 II and onl) il each \ t- Q IS

nonvanishing. Equivalently. G has Crank 11 if and only if there C.Xlsts an
.\' E: Q with g(.\=) = 0 for every g E: G.

Using the statement of Theorem 2.2 and our above conclusions we arc
able to determine the Crank of certain subspaces of C! a, hi

EXAMPLE i. Let G be an II-dimensional subspace of Cia. h! and let (J

contain a positive function. Then G has C· rank"", n- I.

EXAMPLE ii. Let a < XI < Xi < ... x,,, b be any partition or la. hi.
Then by SI/I.,=span(l..v..... x"l,(x xlr' ..... (x XI.)I/I~ we denote the
subspace of polynomial spline functions of degree m with k fixed knots .\ I'
xi ..... x,. Obviously. dimSI/IJ lI1+k+ l. Using the statement of
Theorem 2.2 it is easily verified that S",., has Crank k.

We arc now interested in those G E: iY'1I which have. for some k O.
C-rank "'" k. Furthermore. suppose that C; does not contain any functiun
vanishing identically on subintervals of la. b I. We can then show that these
subspaces are even Chebyshev provided that k "" II 2. To prove this
statement we need some properties on weak Chebyshev subspaces of C! a. b I·

LEMMA 2.3 (Stockenberg 1131). Lei G E: W
II

• Theil Ihe /ol!ol\'ing
conditions hold:

(i) It there is agE: G with II separated, nonl'!lllishing zeros XI

X 2 < ... <x". then g(x)=O/or all x with x"",x l olld x>.\"

(ii) No g E G has more than n separated. nonl'anishing zeros.
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LEMMA 2.4 (Sommer and Strauss [111, Stockenberg [ 121). Let G E W".
Then there exists an (n - I )-dimensional weak Chebyshel' subspace oiG.

We are now in a position to state our main theorem of this section.

THEOREM 2.5. Let G E W" and let G Iwce Crank ~ II 2. ~r 110

nOllzero g E G l'anishes identically on a 1I0lldegenerate subinterml (~r Ia. hi.
thell G is a Chebyshev subspace.

Proof Since G has C-rank ~ II -- 2, it follows from our above
considerations that each x E Ia. b I is nonvanishing. Let g be any function in
G with at least II zeros. Then by assumption on G all zeros of g are
separated. because otherwise g would vanish identically on some subinterval
of la. b I. Now applying Lemma 2.3 we can conclude that g has precisely II

zeros XI < ... <xn and g(x)=O for all X with X~XI and X?X II . Then our
assumption on G implies that XI = a and x" = b. Thus 've have shown that G
is a Chebyshev subspace on la, b) and also on (a, h I. i.e .. each g E G has at
most II - 1 zeros on these intervals.

Suppose now that G is not Chebyshev on Ia, b I. Then arguing as above
we obtain a function g E G such that g has precisely II zeros a = X I <
X 2 < ... < XII = b. where at X 2 ..... XII I there are changes of sign of g. By
Lemma 2.4, there is a basis 1go. g I.· ... gil I I of G such that go· g I ..... gj
span an (i + 1)-dimensional weak Chebyshev subspace of G. i = 0..... II - I.
Without loss of generality let gj have exactly i changes of sign on (a. h). i =

0..... II I. We distinguish two cases.

Case I (n even. say. n = 2p). Then for sufficiently small c> O. the
functions g-cg2k • k=O..... p-l. have n zeros on la.hl. Now arguing as
above we can conclude that g2k(a) = gu(b) = O. k = 0..... p - I. Similarly,
for sufficiently small c > O. the functions g2k± cg2k I' k = I ..... P - I. have
at least 2k changes of sign on (a. b) and. in case g2k I(a) #- 0 or
g u I (b) #- O. at least one further change of sign at a neighborhood of a or b.
respectively. However. these functions belong to the weak Chebyshev
subspaces span 1go. g I.· ... gu f and, therefore, each such function can have at
most 2k changes of sign. This implies that gn I(a) = gn I(b) = 0, k = 1.....
p -- I. Thus there exist n - I linearly independent functions go .... , gil ,in G
vanishing at a and b. But this contradicts the hypothesis that G has
C-rank ~ 11 - 2.

Case II (II odd). We proceed analogously.
This completes the proof of Theorem 2.5.

Remark i. It follows immediately from the first part of the proof of
Theorem 2.5 that C-rank n - 1 already implies that G is a Chebyshev
subspace on la, b) and also on (a, b I.
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Remark ii. The statement of Theorem 2.5 corrects the statement of
Theorem 2 of Bartelt 11]. His theorem was stated for subspaces containing
the constants (recall that such subspaces have C-rank ~ n - 1), however. in
I11 I a counterexample has been presented.

3. GENERALIZED SPLINE SUBSPACES

Now we are able to prove that weak Chebyshev subspaces. under
appropriate hypotheses, can be considered as generalized spline subspaces.

THEOREM 3.1. Let G E W
Il

and let each x E Ia. b I be nonwnishing.
Assume also that there exists a 6 > 0, such that, if g E G and g == 0 on
Ic. dl cia, b I. then d - c ~ 6. Then there exist knots a = X o < XI < ... <
x, = b such that the subspaces G; = G ,.\;1 are Chebyshev subspaces of
C[x;_I,xil with dimension n;. i= I ..... s.

Proof First we follow the lines of Bartelt II. Theorem 3 I: There exist
points a = Yo < YI < ... < Yr = b such that no nonzero g E G; vanishes iden

tically on a subinterval of IYi_ l.y;l. where G;=GI ,\; ,. .1;1' Using
Theorem 1.4 we have that every G; is a weak Chebyshev subspace with
dimension m;. We also show that G; has C-rank ~ m; - I. Suppose that. for
some i E ~ 1.. ... rf, this property is not given. Then there exists an .;;; E
IY; I. Yi I such that g(i) = 0 for every g E G;. This implies that g(.;;;) = 0 for
every g E G, a contradiction.

Thus we have shown that, for i = I ..... r. G; is an m ;-dimensional weak
Chebyshev subspace of C[ Y; I. Yi I with C-rank ~ m; - I and no nonzero
g E G; vanishes identically on a subinterval of I)'i I' Y; I. Therefore it
follows from the remark following the proof of Theorem 2.5. for i = I ..... r.
G; is a Chebyshev subspace on ('\'i I' Y; I and also on IYi I' yJ If G; is
even Chebyshev on IYi I' Y; I, then we are done. But if. for some i E j I ..... r i·
Gi is not Chebyshev there, then we divide IY; I' Yi I and choose a further

knot .f; = (Yi 1+ y;}/2. This implies that both G 1[" ,..v;1 and G Ilv;.,t! are
Chebyshev subspaces with dimension m;. This we may do for all intervals
1.1'; I' Yi I. i = 1.. .. , r, on which Gi is not Chebyshev. We end up with a set of
knots a = X o < XI < ... < x, = b such that, for i = I..... s. G; = G Ilx, ,.\;1 is
Chebyshev with dimension ni . This completes the proof or Theorem 3.1.

Remark i. Following the lines of Theorem 3 in III it is easily verified
that the set of knots constructed in the proof of Theorem 3.1 is a minimal
set.

Remark ii. If we assume that G has C-rank ~ n - 2. then the intervals
IYi I' Yi I must not be divided. Instead we apply Theorem 2.5. To do this we



BEST L I-APPROXIMATION 61

show that all subspaces Gi have C-rank ~ m i - 2, i = I,.. ., r. For a fixed i let

gm , I I. gm,+2.· ... gn be linearly independent functio~s in G such that gi == 0 on
IYi-I'Yi]' j=mi + 1..... 11. Now suppose that Gi fails to have C-rank~

m i - 2. This implies that there exist mi-I functions g,. g2'"'' gm,-I E G
which are linearly independent on IYi ,. Yi I and have two common zeros
there. Therefore the functions gj,... , gm-1' gm-j 1'.... gn have at le:ast two
common zeros on IYi _ j' Yi]' However. this cont~adicts the hypothesis that G
has C-rank ~ 11 - 2. Thus we have shown that Gi has C-rank ~ m i - 2. i =
I ..... r. Now using Theorem 2.5 we conclude that Gi is a Chebyshev subspace

of CI Yi _" Yi I with dimension mi' i = 1... .• r.

Remark iii. The essential difference between Theorem 3 in II I and
Theorem 3.1 is as follows: In Theorem 3 in II I it is assumed that the
constants belong to G. In Theorem 3.1 we only need that each x E la. b I be
nonvanishing. This is really a weaker assumption as the following example
shows: Let G = spanl go. gj f c ClO. 31. where the functions go. gl are
defined by go(x) = x 2 - 3x and

gj(x) = x -- I, if xE 10. J I.
=0. if x E I J. 21·

=x- 2. if x E 12.31.

Then it is easily verified that G is weak Chebyshev and satisfies the
assumptions of Theorem 3. J. But G does not contain any positive function.

Remark iv. The condition on the length of the zero intervals in
Theorem 3.1 cannot be omitted as has been shown in III.

We now present an example showing that because of the choic,~ of the
knots Y j • Y2 ..... Y r - j it is generally necessary to divide some intervals and to
add further knots. Let G = span 1g j • g 2' g) f C CI- J. 31. where the functions
gj' g2' g) are defined by gl(x)= I,

g2(X) = x( I - x 2). if xE I-I. J I.
=0. if x E II. 31.

and

g)(x) = x 2• if xE 1-1.11,

=1. if xEII.3I-

Then it is easily shown that G is weak Chebyshev and has C-rank 2. Now
following the lines of the proof of Theorem 3 in II ] we get Y I = I as the only
knot. However. GI = G II 1.11 is not Chebyshev on I-I. II. Therefore we
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have to divide the interval I. II a further time and obtain, finally, the
knots x, = 0 and x, CC~ I.

It turns out that a similar result as in Theorem 3.1 can be obtained for a

certain subclass of those elements of ~Vn which have Crank 11.

THEORPv! 3.2. Lei GEc W". Lei .\E la.hi alld [el g(.\'l=O for eeery
g E G. Assume also that there exisls a (j, 0 such Ihal. !(g E G alld g== 0 Oil
Ic,dl la.bl· then d--c:):(). Then Ihere exist knols a x,,<x

1

x, = h such rhar Ihe subspace.I' G, G 1\ , \1 are ~l'eak Chebyshcl' [l'irh
dimensioll 1/, (n, c:~ 0). i -c I,. .. , s. Furthermore. no nonzero t; E~ G, callishes
idellrica[[.1' on a 1I0ndegeneraie subilllerl'a[ (I(v, I' XI

Arguing as in the proof of Theorem 3. I we can easily verify the above

statements. Weak Chebyshev subspaces of the same type as those in

Theorem 3.2 have been investigated by Sommer and Strauss III I and

Stockenberg 1131.
Now we show that the converse of Theorem 3.1 is also true.

THEOREM 3.3. Ler a = X" '" x, X, = h he kllOIS Oil la, b I. For i
I. .... s. [el G, he a Chebyshel' subspace (~( Clx l I' XII \l'ilh dimellsioll II,

(11,:): I). Lei G = IgE Cla,bl: gll\ I",IE G" i I. .... s:. Theil G isa 1\'CC1A.

Cheb.1'shel' subspace of Cia, h I ~l'ith dimension 11 ~; In, (s I),

Furthermore. each x E la, h I is nonl'anishing.

Proof Bartelt II. Theorem 41 has proved that G is weak Chebyshev
under the additional assumption that the constants are contained in every G f

Since each Chebyshev subspace contains a positive function (see Karlin and

Studden 17. p. 281), the first sentence of the conclusion of Theorem 3.3
follows directly from Theorem 4 in Ill. Because of the existence of a positive

function in G. the second sentence follows immediately, too.

We call weak Chebyshev subspaces such as the one constructed in
Theorem 3.3 "continuously composed Chebyshe\ subspaces" (ee
subspaces). [n particular. if II, == m. i I..... s. then G is a subspace of spline
functions with s 1 fixed knots of multiplicity 11/ I.

4. BEST L l-ApPROXIMAI ION

In addition to the uniform norm let the L ,-norm be endowed on Cia. hi·
For every subspace G of CI a. h I consider the set (!!' hesr 1'1 approximations
of a function f from G
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We need the following condition established by DeVore for one-sided L I

approximation and by Strauss 1151 for L ,-approximation.

DEFINITION 4.1. Let G be a subspace of Cia, b I. Let each g E G have
only finitely many separated zeros. We say that G satisfies condition A if.
for every nonzero function go E G and every finite subset Z =, 1zd; II of
Z( go) Ii (a, b) (I' E ), there exists a nonzero function g! E G satisfying:

(i) (-lrgly),?O,xElz; l.zJi=I,.... ,.+l,z,)=a.z!.I~··h.anci

(ii) if go == 0 on an open subset M of la, bl, then gl == 0 on M. (Recall
that Z( go) is the set of zeros of go on la, b I·)

If ,. c= I, then Z = 0. Therefore. the existence of a nonnegative function in
G is required.

Strauss 1151 has proved the following result:

THEOREM 4.2. Let G be an n-dimensional subspace of CI a. b I sati~rl'ing

condition A. Then P)J,f) is a singleton for el'el',l'.r E Cia. b I.

Now we show that for a large class of weak Chebyshev subspaces condition
A is satisfied. By Theorem 4.2, therefore, uniqueness of best L I

approximations follows. We also show that, in particular, the subspaces of
polynomial spline functions and the CC subspaces belong to that class. We
define

VII = j G E W II : G fulfills the hypotheses of Theorem 3.1 :.

Recall that, by Theorem 3.1, VII contains exactly those elements G E ~VII

which can be decomposed by finitely many knots into Chebyshev subspaces.
;\low let G E VII and let a = X(l <X I < ... < x, = b be knots of G as in
Theorem 3.1. We define for any i. j E :O. L.. .. sf. i < j

In generaL the subspace Gij is not weak Chebyshev. However. we are able
to define a subclass of VII for which every Gij has this property.

17 11 = IGE VII:lbdZ(g)i~mijforevery gEG;;, i,jE 10..... sl. i jl.

Here bd Zig) denotes the set of all boundary points of Zig) and Ibd Z(g)1
denotes the number of all boundary points of Z( g).

We are now in position to present some important examples of elements
of ~/II'

EXAMPLE i. Let m. k E with m + k + I = n. Let a = X o < X I < ... <
X'i I = b be a partition of la. b I. Consider the subspace S"'.k of polynomial
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spline functions of degree m with k fixed simple knots x, ,... , x k as defined in
Section 2. It is well known (cr.. e,g .• Karlin and Studden 17. p. 18 J) that G =
SIIl.k E W/l' Now it is easily verified that for any i, j E 10.... , k + I r, i < j,
Gu=span~(x,-x)'~. (x,-x)':' .... , (xl--x)':', (x x;)IIl, (x x l ',)IIl, ....
(x - x k )'7 f. This implies that dim Gu = mu = k + i - j+ 1. By counting
zeros of splines as in Schumaker 110. p. 288-2891, it immediately follows

that IbdZ(g)l<k+i-j+l=m u' for every gEGu' Hence SilLiEr'".
This result is also true for knots with multiplicity less than m + I.

EXAMPLE ii. Let G be constructed as in Theorem 3.3. Then it is easy to
show that. for any I, j E {o..... s 1. 1 < j. Gu has a basis consisting of: For p
j + 1.. .. , s, Ilf' - I functions vanishing identically on Ia. x" ,I and linearly

independent on Ix" "x,) I and. for p = 1..... i, 11,. I functions vanishing
identically on lx". b I and linearly independent on Ix,. "x,. I. Hence

dimGu="~ ;1,11,,+";, ,II" (s j i)=lIliJ'
Let gE Gi;. Then ibdZ(g)I<II,,--1 on Ix!, "x"l, p= L...,I.j+ 1.. ... \.

This implies that Ibd Z(g)1 < mu which shows that G belongs to VII'

L "Uniqueness for subspaces of polynomial spline functions has been
recently shown by Galkin 141 and Strauss 1141 and for some special CC
subspaces by Carroll and Braess 121. We are now able to establish L I'

uniqueness for each subspace G in V/l' Then. in particular. from our theorem
there follow all of these resu Its.

We need the following fundamental lemma:

LEMMA 4.3. Let G E V/l' Theil. for allY i, j E 10•.... \ I, i < j:

(i) GiJ is weak ChebysheL' with dimellsioll mu :

(ii) For eL:ery function g, E Gu there is a function il E G such that
g, = g, all Ixi . b I and g, == 0 on la, x;i:

(iii) For every functioll g, E Gu there is a function g, E G such that
,~,= g, on la.xil and g2==0 on Ixj.bl.

Proof (i) Suppose that GiJ is not weak Chebyshev for some (i.)). Then
there exists a go E Gu with at least mij changes of sign on (a, b). Since go == 0
on Ix i • xJ Ibd Z(go)l:) mij + I, in contradiction to the hypothesis G E ~/".

We prove now (ii): (iii) follows analogously. Let Rij = I g Ilxi.hl: g E Gid,
dim R ij = rij' Obviously. rij < m ii" The statement will be proved if we can
show that mOi = rij' where mOi = dim G Oi ' Using Theorem 1.4 we conclude
that Rii is weak Chebyshev. Therefore by Lemma 1.3 there exists a function
g,EGij with rij-l changes of sign on (xi,b). This implies that
Ibd Z( g,)1 :) rii on IXi' b I· If rij = mij' then it follows from the hypothesis on
Gij that Ibd Z(g,)1 < mij = r il and. therefore, g, == 0 on la, xJ This implies
that g, EGo;' Then it follows from the hypothesis on Go; that Ibd Z( g, ) :s,
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111 0j • Thus we have shown that l11ij== rij= Ibd Z(gl)1 (, 1110j . Hence observing
that 111 0j (, mij we get the desired equality mOj = rij'

Now assume that rij < mij' Then there exist exactly mij - rij linearly
independent functions in Gij vanishing identically on [.,> b I. This implies
that dim Gis = m is = l11ij - rij' Let Gis be spanned by the functions hi'
hz ..... hmi ,· If there exists agE Gis such thatg= gl on [a.x i [. then~~- gl is
an element of GOj satisfying 1bd Z( g - g /)1 ~ rij' Since GOj c Gij. it follows
that m llj (, rij' Hence the preceding arguments show that mOi = rij' If there
does not exist any gE Gis such that g= gl on [a. x;!. then the space

G= span~hl' h z•.... h ll1j ,. gl} IIII.X;J

has dimension mis + I. By Lemma 1.3 there exists a gz E Gij with at least mi,
changes of sign on (a. xi). This implies that IbdZ(gJ~mi'+ Ion [a.x;!.
As g,='L7'i'la ihi +bg l . IbdZ(g,)I=lbdZ(gl)l~rij on [xi.bl and.
therefore. [bdZ(gJ~mis+ I +ru =l11ij-rij+ I +rij=mij+ I. But this
contradicts the hypothesis that Ibd Z(g)1 (, mii for every g E Gu. (Recall that
hi ..... hm span an mis-dimensional weak Chebyshev subspace and. therefore.
the coeffi~ient b in the representation of g 2 must be nonzero.) This completes
the proof of Lemma 4.3.

We are now in position to state the main result of this section.

THEOREM 4.4. Let G E V". Then G satisfies condition A.

Proof Let goEG and let ZcZ(g(I)n(a.b) be a finite set. We
distinguish two cases:

Case I. Let go not vanish identically on any nondegenerate subinterval
of [a.bl. Let Z=jzl'f~ \ (rEltJ). Then it follows from Lemma 2.3 that
r (, n. Using Lemma 2.4 we find an r-dimensional weak Chebyshev subspace
of G. and by Lemma 1.2. therefore. there is a nonzero gE G such that

(-1)" g(x)O. xE Izl' l.z/,I.p= I ..... r. zo=a. zr=b.

Case 2. Let go vanish on a subinterval of la. b I.
We have to distinguish. once more. three cases:

Case i. Let J = lXi' Xii. a < Xi < xj (, b such that go == 0 on I and go does
not vanish identically on any nondegenerate subinterval of [a. Xi I. Using

Lemma 4.3 we find a go E Gis with go = go on [a. xJ By hypothesis on Gis'
IbdZ(go)I(,l11 is and. therefore. IbdZ(go)l(,mis-1 on [a.xJ Then the
assumption on go implies that go has at most l11 is - I zeros on la. xi). Let
Zn(a.xi)= jZp}~~ll (rE N). Then r(,mis ' Using Lemmas 2.4 and 1.2 we
obtain a nonzero function gE Gis such that

(-I )P g(x) ~ O.

In particular. g == 0 on Ix i • b I.
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Case ii. Let I = lXi' xJ a ~ x, < Xi < b such that go == 0 on I and gil
does not vanish identically on any nondegenerate subinterval of Ix,. b I. Here
we can conclude as in Case ii.

Case iii. Let I] = [a,x,,1 and r,= Ixi,x,l. x" ~x,. such that gll=O on
I] U 12 and go does not vanish identically on any nondegenerate subinterval
of Ix", xJ Using Lemma 4.3 we find a go E G" with go == go on [a. x,I. 'fhis
implies that the linear subspace G= Go" n G" has dimension d? I.

We show that G is even weak Chebyshev. Suppose that () fails to be weak
Chebyshev. Then there exists a g] E D with at least d changes of sign on
(x". x,). Since g I E D. it follows that g] 0 on [a, Xii Iu [x,. b I. This implies
that bd Z( g]): ? d + 2. Now using that GC~ Go" we conclude that
! bd Z( g] )1 ~. mo" Therefore m o,,? d + 2. Hence there exist 111 oil d
functions in Go" linearly independent on Ix i • h I and a function g, E:: GOIi with
at least mo/>- d I changes of sign on (Xi_ b). Therefore. for sufficiently
small c > O. either the function g] + cg, or the function g I cg, has at least
mOil d I changes of sign on (Xi' b). at least d changes of sign on (XI" Xii

and a further one at a neighborhood of x,. This implies that one of these
functions has at least mOil changes of sign on (.\'/,. b). But this contradicts the
hypothesis that G'11i is weak Chebyshev. Thus we have shown that (; IS ~.I

weak Chebyshev subspace.
Next we show that go has at most d I zeros on ('\11' .\,). Assume that

jZ(go)!? d on (x". x,). Then go(.\,,) '" go(.\,) == 0 implies that Z(g,,);,: d + ::
on [x" _x, I. From go== go on [a. x, [ and .~o C G i , it follows that IZ( gil)! ,c; 11/ i,

on Ix il • x,!. Therefore d < mi' = dim G i ,. Now using the fact that ec Gil we
find lI1 i , d functions in Gil linearly independent on la. ,\" i and a function
if E G with at least mil d - I changes of sign on (a. x,,). Let 111 be the
number of all zeros of go on Ix il • Xi I and 1'] the number of all common zeros
of go and g on Ix li • xJ We classify the other m -- 1', zeros of gil on jx". Y. i
as follows:

Let 1': be the number of all double zeros \\llth the property that ft)J" each of
these zeros there exists a neighborhood U such that go(x) ,~(.\) ;;; 0 for ever}
xE U.

Let r 1 be the number of all double zeros with the property that for each of
these zeros there exists a neighborhood U such that go(x) g(x) <0 for every
X E U.

Let 1"4 be the number of changes of sign.
In the case when g(xiI ) *' 0, the zero Xii of go is not considered in the above
classification, because by Definition 1.1, x" is neither a double zero nor a
zero with a change of sign of go. Thus we have

if g(x ll ) I- O.

if g(x,,).~~O,
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We distinguish two cases:

Case i (1'2> r 1 or 1'2 < rl' respectively). Without loss of generality let

I' 2 > r1 • Then for sufficiently small c > 0 the function go - cg has at least
m js -- d - I separated zeros on (a, x h ) and at least 1'1 -+ 1'4 -+ 21'2 ? 1'1 -+ 1'2 +
r 1 -+ 1'4 -+ I ? m separated zeros on [x h ' xJ This implies that
ibdZ(g(l-~cg)l?m-+mi.\-d-l?d-+2-+mi\-d-l=mi'+Ion [a.xJ
As go= go on la,xil. IbdZ(go--cg)l?m i\-+ I. However. the function
go -- cg is an element of Gis and, therefore, we get a contradiction to the

hypothesis that Ibd Z(go - cg)1 ~ mil'

Case ii (1'2 = 1')). Without loss of generality let go g? 0 on some
neighborhood of x h (otherwise we take -- g). Then for sufficiently small c > 0
the function go - cg has at least mil -- d - I separated zeros on (a, x,,) and at
least

if if(x,,) 1=- O.

separated zeros on Ixh,xil (in the case when g(x,,) 1=-0 there exists at least
one zero in some neighborhood of x,,). This implies that Ibd Z( go - cg)l?
mis -- d- I -+ m ? mis - d - I -+ d -+ 2 == mis -+ I. a contradiction as has
been shown in Case i.

Thus we have proved that IZ( go)1 ~ d - I on (x". Xi)' (Note that this
property holds for every function g E G). Now let Z n (x". x,) :.= i ::" i;; I;
(r E ). Then. as in Case I. we get a function g E G satisfying condition A.
Thus we have shown that G satisfies condition A.

In general. condition A is not necessary for uniqueness of best L I
approximations. We show this by two examples. In particular. we will see
that the weak Chebyshev property is not sufficient for L I-uniqueness. For
this we need a characterization of L I-uniqueness established by Cheney and

Wulbert [31.

THEOREM 4.5. Let G be a subspace of CI a. b I. Then the fo/IOll'ing
conditions are equivalent:

(i) For any f E Cia, b I the set P;,(/) is at most a singleton.

(ii) If for any function f E Cia, b I with 0 E P;;(f). there exists a
function g E G with Z( g) =:J Z(f). then g == O.

For special subspaces of Cia. b I we can present Corollary 4.6. To do this
let G be a subspace and let
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,h It g(X) S(X) dx = 0 for every g E G \'

By a theorem of Hobby and Rice [51. E(; is always a nonempty set.

COROLLAR y 4.6. Let G be a subspace of CI a. b I. Let no nonzero g E G
l'anish iden/icalzl' on a nondegenerate subinterval of [a. b [. Assume also that
the Lebesgue measure .1l(Z(g)) == 0 for every nonzero g E G. Then the
/ollowing conditions are equivalent:

(i) (l there arefunctionsfE Cla.b[ and gE G such that OE p;.cl'l
and Z( g)J Z(f). then g == 0,

(ii) U' there are functions IE Cia. b \ and g E G such (hat s
sgn f E E(, and Z( g) Z(s). (hen g == O.

Proof Let 0 E P);(f) and g" E G. go ie O. with Z( go) ) Len. By the
well-known characterization theorem for best L ,-approximation Isee Rice
18, p. 1031). we obtain

I
i (' g(x) sgnf(x) dx I ,;;; I . i g(x)1 dx for every g E G.

• U • /(11

Then, since ,ll(Z( go) = 0 and Z( go) =) Z(f), this is equivalent to

I,C g(x) sgn/(x) dx I ,;;; tR,,1 Ig(x)1 dx = 0 for every g E G.

This implies that 5 = sgn f E E(, and Z( go).J Z(s). go ie O.

Remark. It turns out that this characterization is also true for arbitrary
one- and two-dimensional subspaces of CI a, b I. But we do not know if it is
also valid in the higher dimensional case.

Using the above results we can prove that condition A is not necessary for
L ,-uniqueness.

EXAMPLE i. Let G = span ~ go fee [-I. II. where go is defined by

=x.

if xE [-1.01.

if x E [0. II.

Then it is easily verified that there exists no function fECI-I. I I for which
5 = sgn / E Eli and Z(s) c Z( go)' Using Theorem 4.5 and Corollary 4.6 we
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can then conclude that every fECI ~ I, II has a unique best L I

approximation from G. However, condition A is not satisfied.

EXAMPLE ii. Let G = span 1gil' g If c CI a, 4 i and let the functions go
and gl be defined by go(x) = I and

glx)=x-a, if xE [a. al.
=a. if xE la,4-al.

= x - (4 -- a). if x E 14 -- (1,41.

where I < a < 2. Let some f E Cia, 41 be given such that So = sgn f E E(;.
Then So has at least one zero on [a. a) and at least one on (4 - a. 41.
However. there does not exist any nonzero g E G with zeros on [a. a) and on
(4 ~ a. 41. Therefore Corollary 4.6 shows that G guarantees L I-uniqueness.
Now setting X o= a. XI = (1, x 2 = 4 - a. Xl = 4 we cannot find any nonzero
g E G such that (_I)i g(x) ) a. X E Ixi . Xi I I I. i = a. l. 2, which implies that
condition A is not satisfied.

The next example shall illustrate that. contrary to subspaces of polynomial
spline functions. L I-uniqueness does not generally hold for subspaces of
generalized splines.

EXAMPLE. Let G = spanl go' gj f c Cia, 41, where go(x) = I and gl is
as in Example ii, with a = I. This shows that G E W 2 • Now setting X o = a.
XI = l. X 2 = 3, X 3 = 4 we can conclude that the subspace qi = G II\i ,.\i!'

i = I, 2. 3, is Chebyshev. Therefore G E V 2 • However. G E V2 , since G 12 =
span {g II and I bd Z( g 1)[ = 2. Now it is easily shown that the function So

defined by

so(x) = l. if xE 10. I),

=0. if X = l.

= -l. if x E (1,3),

=a. if X= 3.

= I. if xE(3.4j.

is contained in E G • Obviously, Z(gl)::::J Z(so)' Hence the statements of
Corollary 4.6 and Theorem 4.5 show that G does not guarantee L 1

Uniqueness.
Considering the proofs of Lemma 4.3 and Theorem 4.4 it turns out that all

arguments occurring there can also be applied to those weak Chebyshev
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subspaces which fulfill the hypotheses of Theorem 3.2. To show this we
define the subclass 171/ of WI/ by

1'1/ i G E ~j/I/: G fulfills the hypotheses of Theorem 3.2 f.

For each g E V" let a ~.. x" ' .\ I • .. < x, = h be knots as in Theorem 3.2.
Let Gu and mu be defined as in the case when GEl'". Let

VI/C" iGE VI/: !bdZ(g) ~lIlii for every gE:: (fii' i.jE :0..... 1:. i 'I.

and IZ( g)1 ~ 11 Ion la. h) and on (a. b I for evcry KEG which

does not vanish on a nondcgcncrate subIlltenai of la. hi:.

Then Theorem 4.7 IS an immediate consequence oj the arguments
occurring in the proofs of Lemma 4.3 and Theorem 4.4.

THEOREM 4.7.

Therefore by
However. simple

GE VI/'

Let G E ~-;I/' Theil G sati.~jles conditioll A.

Theorem 4.2. every (; E: In guarantees L I uniqueness.
examples show that this property is not generally given if
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